Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks.
نویسندگان
چکیده
Structural and functional changes ensue in cardiac cell networks when cells are guided by three-dimensional scaffold topography. We report enhanced synchronous pacemaking activity in association with slow diastolic rise in intracellular Ca2+ concentration ([Ca2+]i) in cell networks grown on microgrooved scaffolds. Topography-driven changes in cardiac electromechanics were characterized by the frequency dependence of [Ca2+]i in syncytial structures formed of ventricular myocytes cultured on microgrooved elastic scaffolds (G). Cells were electrically paced at 0.5-5 Hz, and [Ca2+]i was determined using microscale ratiometric (fura 2) fluorescence. Compared with flat (F) controls, the G networks exhibited elevated diastolic [Ca2+]i at higher frequencies, increased systolic [Ca2+]i across the entire frequency range, and steeper restitution of Ca2+ transient half-width (n = 15 and 7 for G and F, respectively, P < 0.02). Significant differences in the frequency response of force-related parameters were also found, e.g., overall larger total area under the Ca2+ transients and faster adaptation of relaxation time to pacing rate (P < 0.02). Altered [Ca2+]i dynamics were paralleled by higher occurrence of spontaneous Ca2+ release and increased sarcoplasmic reticulum load (P < 0.02), indirectly assessed by caffeine-triggered release. Electromechanical instabilities, i.e., Ca2+ and voltage alternans, were more often observed in G samples. Taken together, these findings 1) represent some of the first functional electromechanical data for this in vitro system and 2) demonstrate direct influence of the microstructure on cardiac function and susceptibility to arrhythmias via Ca(2+)-dependent mechanisms. Overall, our results substantiate the idea of guiding cellular phenotype by cellular microenvironment, e.g., scaffold design in the context of tissue engineering.
منابع مشابه
Calcium instabilities in mammalian cardiomyocyte networks.
The degeneration of a regular heart rhythm into fibrillation (a chaotic or chaos-like sequence) can proceed via several classical routes described by nonlinear dynamics: period-doubling, quasiperiodicity, or intermittency. In this study, we experimentally examine one aspect of cardiac excitation dynamics, the long-term evolution of intracellular calcium signals in cultured cardiomyocyte network...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملBurn trauma alters calcium transporter protein expression in the heart.
We have shown previously that burn trauma produces significant cardiac dysfunction, which is first evident 8 h postburn and is maximal 24 h postburn. Because calcium handling by the cardiomyocyte is essential for cardiac function, one mechanism by which burn injury may cause cardiac abnormalities is via calcium dyshomeostasis. We hypothesized that major burn injury alters cardiomyocyte calcium ...
متن کاملMacroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution.
Optical mapping of cardiac excitation using voltage- and calcium-sensitive dyes has allowed a unique view into excitation wave dynamics, and facilitated scientific discovery in the cardiovascular field. At the same time, the structural complexity of the native heart has prompted the design of simplified experimental models of cardiac tissue using cultured cell networks. Such reduced experimenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 3 شماره
صفحات -
تاریخ انتشار 2004